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Introduction Known results The new result

The problem and its variants

Question (Existence of Steinhaus sets)

For a given A ⊆ R2 does there exist H ⊆ R2 such that for each rigid motion
ρ ∈ Iso(R2)

|ρ(A) ∩ H| = 1?

E.g. if one chooses A = Z× {0}, or Z× Z?

And for A = Z× {0} could we require H to have λ1-measurable traces on the
lines?

Question (A. Kumar)

Does there exist H ⊆ R2 such that for every line l ⊆ R2

λ1(l ∩ H) = 1 ?

Question (Borel 2-point set)

Does there exists H ⊆ R2 Borel such that for each line l ⊆ R2

|l ∩ H| = 2 ?
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Facts

Theorem

(CH) There exists a set H ⊆ R2 such that for each line l ⊆ R2

(l ∩ H is λ1-measurable, and)

λ1(l ∩ H) = 1.

Proof. Let {lα : α < ω1} be the enumeration of the lines in the plane.

For each α < ω1 choose Hα ⊆ lα \
⋃
β<α lβ with λ1(Hα) = 1.

Let H =
⋃
α<ω1

Hα.

For λ1(H ∩ lα) note that

Hα ⊆ H ∩ lα ⊆ Hα ∪

 ⋃
β<α

(lα ∩ lβ)

 .

Remark

We only needed that each set of size less than continuum is null, i.e.
non(N ) = c.
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Known results

Theorem

(Komjáth, ’92) There exists H ⊆ R2 such that for each rigid motion
ρ ∈ Iso(Rn)

|ρ(Z× {0}) ∩ H| = 1.

(Jackson-Mauldin, 2002) There exists H ⊆ R2, for which for every
ρ ∈ Iso(Rn)

|ρ(Z× Z) ∩ H| = 1.

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ2-measurable H ⊆ R2, for which

λ2-a.e. x ∈ R2 a.e. l 3 x : λ1(H ∩ l) = 1.
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Known results

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ2-measurable H ⊆ R2, for which

λ2-a.e.x ∈ R2 a.e. l 3 x : λ1(H ∩ l) = 1.

Idea of the proof:
Consider H ⊆ R2 × {0}, χH : R3 → {0, 1}.

Define h : R3 → [0,∞], h(z) =
∫
R2 χH(w) · 1

|w−z|dλ
2(w).

Then for λ2-a.e. x ∈ R2 × {0}

h(x) =

∫ π

θ=0

∫ ∞
r=−∞

χH(x+r(sin(θ), cos(θ), 0))· 1

|x + r(sin(θ), cos(θ), 0)− x | ·|r | drdθ =

∫ π

θ=0

∫ ∞
r=−∞

χH(x + r(sin(θ), cos(θ), 0)) · 1

|r | · |r | drdθ =

∫ π

θ=0

1 dθ = π.
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∫
R2 χH(w) · 1

|w−z|dλ
2(w).

h(x) = π for λ2-a.e. x ∈ R× {0}, and

h is continuous,

0 ≤ h ≤ π,

h|R2×(0,∞)
is harmonic, i.e.

1
σ({z: |z−z0|=δ})

∫
{z: |z−z0|=δ}

h(z) dσ(z) = h(z0) (where σ is the spherical

measure).

This implies (integrating with Poisson-kernel) that h|R2×{0} ≡ π determines

h|R2×[0,∞)
, hence h|R2×[0,∞)

≡ π. But limc→∞ h((a, b, c)) = 0, a contradiction.
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Consistency of the nonexistence

Theorem (M. Elekes, M. P., Z. Vidnyánszky)

It is consistent with ZFC that there is no set H ⊆ R2 such that for a dense
D ⊆ R2

if x ∈ D, then for a.e. l 3 x : λ1(l ∩ H) = 1.
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Tools

Definition

shr(N ) = min{κ : ∀A ⊆ R,A /∈ N ∃B ⊆ A such that B /∈ N , |B| ≤ κ},
cov(N ) = min{κ : ∃(Nα)α<κ ∀αNα ∈ N ∧

⋃
α<κ Nα = R}

(where N denotes the null ideal in R).

Theorem (Folklore)

(shr(N ) < cov(N )) Suppose that f : R2 → R has λ1-measurable sections
(i.e. for each a fa : R→ R (fa(y) = f (a, y)) is λ1-measurable, and for each b
f b(x) = f (x , b) is λ1-measurable.)
Then there exists f ′ : R2 → R Borel such that for almost every a ∈ R fa and f ′a
are almost equal, and for a.e. b, f b and (f ′)b are almost equal.
In particular, if f ≥ 0 then y 7→

∫∞
x=−∞ f (x , y) dx , x 7→

∫∞
y=−∞ f (x , y) dy are

λ1-measurable, and∫ ∞
y=−∞

∫ ∞
x=−∞

f (x , y) dxdy =

∫ ∞
x=−∞

∫ ∞
y=−∞

f (x , y) dydx .
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The idea

Theorem (M. Elekes, M. P., Z. Vidnyánszky)

It is consistent with ZFC that there is no set H ⊆ R2 such that for a dense
D ⊆ R2

if x ∈ D, then for a.e. l 3 x : λ1(l ∩ H) = 1.

Assume that shr(N ) < cov(N ). Suppose that such H exists. (For simplicity
assume that H has measurable vertical and horizontal sections.)
Define h : R3 → [0,∞] similarly

h(w) =

∫ ∞
y=−∞

∫ ∞
x=−∞

χH((x , y)) · 1

|(x , y , 0)− w |dxdy .

h will have similar properties than the previous one, but we cannot use polar
transformation (for h|D ≡ π).

Instead, for a fixed w ∈ D denoting χH((x , y)) · 1
|(x,y,0)−w| by fw(x, y), and

fixing an automorphism of the projective plane g which maps horizontal lines to
horizontal lines, and vertical lines to lines through w , and

ϕ : [0, π]× R→ R2, ϕ(θ, r) = w + r(sin(θ), cos(θ)).
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The key lemmas

h(w) =

∫ ∞
y=−∞

∫ ∞
x=−∞

χH((x , y)) · 1

|(x , y , 0)− w |dxdy .

For a fixed w ∈ D denoting χH((x , y)) · 1
|(x,y,0)−w| by fw(x, y), and fixing an

automorphism of the projective plane g which maps horizontal lines to
horizontal lines, and vertical lines to lines through w , and

ϕ : [0, π]× R→ R2, ϕ(θ, r) = w + r(sin(θ), cos(θ)).

Lemma∫∞
y=−∞

∫∞
x=−∞ fw (x , y)dxdy =

∫∞
y=−∞

∫∞
x=−∞ fw (g(x , y)) · | det g ′(x , y)|dxdy

(where det g ′(x , y) = ∂xg1(x , y) · ∂yg2(x , y) = ∂xg1(x , y) · ∂yg2(0, y)).

Lemma∫∞
x=−∞

∫∞
y=−∞ fw (g(x , y)) · | det g ′(x , y)|dydx =∫ π

θ=0

∫∞
r=−∞ fw (ϕ(θ, r)) · | detϕ′(θ, r)|drdθ = π.

with introducing f0(x , y) = fw (g(x , y)) · | det g ′(x , y)|,
f1(r , θ) = fw (ϕ(θ, r)) · | detϕ′(θ, r)| and the transformation ϕ−1 ◦ g
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Thank you for your attention!
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