Planar sets meeting each line in a set of measure 1

Márk Poór Eötvös Loránd University, Budapest

Winter School in Abstract Analysis, section Set Theory & Topology

February 2019

joint work with Márton Elekes and Zoltán Vidnyánszky

Question (Existence of Steinhaus sets)

For a given $A \subseteq \mathbb{R}^2$ does there exist $H \subseteq \mathbb{R}^2$ such that for each rigid motion $\rho \in Iso(\mathbb{R}^2)$

 $|\rho(A) \cap H| = 1?$

E.g. if one chooses $A = \mathbb{Z} \times \{0\}$, or $\mathbb{Z} \times \mathbb{Z}$?

Question (Existence of Steinhaus sets)

For a given $A \subseteq \mathbb{R}^2$ does there exist $H \subseteq \mathbb{R}^2$ such that for each rigid motion $\rho \in Iso(\mathbb{R}^2)$

 $|\rho(A) \cap H| = 1?$

E.g. if one chooses $A = \mathbb{Z} \times \{0\}$, or $\mathbb{Z} \times \mathbb{Z}$?

And for $A = \mathbb{Z} \times \{0\}$ could we require H to have λ^1 -measurable traces on the lines?

Question (Existence of Steinhaus sets)

For a given $A \subseteq \mathbb{R}^2$ does there exist $H \subseteq \mathbb{R}^2$ such that for each rigid motion $\rho \in Iso(\mathbb{R}^2)$

 $|\rho(A) \cap H| = 1?$

E.g. if one chooses $A = \mathbb{Z} \times \{0\}$, or $\mathbb{Z} \times \mathbb{Z}$?

And for $A = \mathbb{Z} \times \{0\}$ could we require H to have λ^1 -measurable traces on the lines?

Question (A. Kumar)

Does there exist $H \subseteq \mathbb{R}^2$ such that for every line $I \subseteq \mathbb{R}^2$

 $\lambda^1(I \cap H) = 1$?

Question (Existence of Steinhaus sets)

For a given $A \subseteq \mathbb{R}^2$ does there exist $H \subseteq \mathbb{R}^2$ such that for each rigid motion $\rho \in Iso(\mathbb{R}^2)$

 $|\rho(A) \cap H| = 1?$

E.g. if one chooses $A = \mathbb{Z} \times \{0\}$, or $\mathbb{Z} \times \mathbb{Z}$?

And for $A = \mathbb{Z} \times \{0\}$ could we require H to have λ^1 -measurable traces on the lines?

Question (A. Kumar)

Does there exist $H \subseteq \mathbb{R}^2$ such that for every line $I \subseteq \mathbb{R}^2$

 $\lambda^1(I \cap H) = 1 ?$

Question (Borel 2-point set)

Does there exists $H\subseteq \mathbb{R}^2$ Borel such that for each line $I\subseteq \mathbb{R}^2$

 $|I \cap H| = 2$?

	Known results ●000	The new result 000000
Facts		

(CH) There exists a set $H \subseteq \mathbb{R}^2$ such that for each line $I \subseteq \mathbb{R}^2$ ($I \cap H$ is λ^1 -measurable, and)

 $\lambda^1(I\cap H)=1.$

Proof. Let $\{I_{\alpha}: \alpha < \omega_1\}$ be the enumeration of the lines in the plane.

	Known results ●000	The new result 000000
Facts		

(CH) There exists a set $H \subseteq \mathbb{R}^2$ such that for each line $I \subseteq \mathbb{R}^2$ ($I \cap H$ is λ^1 -measurable, and)

$$\lambda^1(I\cap H)=1.$$

Proof. Let $\{I_{\alpha} : \alpha < \omega_1\}$ be the enumeration of the lines in the plane. For each $\alpha < \omega_1$ choose $H_{\alpha} \subseteq I_{\alpha} \setminus \bigcup_{\beta < \alpha} I_{\beta}$ with $\lambda^1(H_{\alpha}) = 1$.

Known results	
0000	000000

Facts

(CH) There exists a set $H \subseteq \mathbb{R}^2$ such that for each line $I \subseteq \mathbb{R}^2$ ($I \cap H$ is λ^1 -measurable, and)

$$\lambda^1(I\cap H)=1.$$

Proof. Let $\{I_{\alpha} : \alpha < \omega_1\}$ be the enumeration of the lines in the plane. For each $\alpha < \omega_1$ choose $H_{\alpha} \subseteq I_{\alpha} \setminus \bigcup_{\beta < \alpha} I_{\beta}$ with $\lambda^1(H_{\alpha}) = 1$. Let $H = \bigcup_{\alpha < \omega_1} H_{\alpha}$. For $\lambda^1(H \cap I_{\alpha})$ note that

$$H_{\alpha} \subseteq H \cap I_{\alpha}$$

Known results	
●000	

Facts

(CH) There exists a set $H \subseteq \mathbb{R}^2$ such that for each line $I \subseteq \mathbb{R}^2$ ($I \cap H$ is λ^1 -measurable, and)

$$\lambda^1(I\cap H)=1.$$

Proof. Let $\{I_{\alpha} : \alpha < \omega_1\}$ be the enumeration of the lines in the plane. For each $\alpha < \omega_1$ choose $H_{\alpha} \subseteq I_{\alpha} \setminus \bigcup_{\beta < \alpha} I_{\beta}$ with $\lambda^1(H_{\alpha}) = 1$. Let $H = \bigcup_{\alpha < \omega_1} H_{\alpha}$. For $\lambda^1(H \cap I_{\alpha})$ note that

$$H_lpha \subseteq H \cap I_lpha \subseteq H_lpha \cup \left(igcup_{eta < lpha}(I_lpha \cap I_eta)
ight).$$

Known results	
●000	

Facts

(CH) There exists a set $H \subseteq \mathbb{R}^2$ such that for each line $I \subseteq \mathbb{R}^2$ ($I \cap H$ is λ^1 -measurable, and)

$$\lambda^1(I\cap H)=1.$$

Proof. Let $\{I_{\alpha} : \alpha < \omega_1\}$ be the enumeration of the lines in the plane. For each $\alpha < \omega_1$ choose $H_{\alpha} \subseteq I_{\alpha} \setminus \bigcup_{\beta < \alpha} I_{\beta}$ with $\lambda^1(H_{\alpha}) = 1$. Let $H = \bigcup_{\alpha < \omega_1} H_{\alpha}$. For $\lambda^1(H \cap I_{\alpha})$ note that

$$H_{lpha} \subseteq H \cap I_{lpha} \subseteq H_{lpha} \cup \left(\bigcup_{eta < lpha} (I_{lpha} \cap I_{eta}) \right).$$

Remark

We only needed that each set of size less than continuum is null, i.e. $\mathsf{non}(\mathcal{N}) = \mathfrak{c}.$

	Known results	
	0000	000000
Known results		

• (Komjáth, '92) There exists $H \subseteq \mathbb{R}^2$ such that for each rigid motion $\rho \in Iso(\mathbb{R}^n)$

 $|\rho(\mathbb{Z}\times\{0\})\cap H|=1.$

• (Jackson-Mauldin, 2002) There exists $H \subseteq \mathbb{R}^2$, for which for every $\rho \in Iso(\mathbb{R}^n)$

 $|\rho(\mathbb{Z} \times \mathbb{Z}) \cap H| = 1.$

	Known results	
	0000	000000
14		

Known results

• (Komjáth, '92) There exists $H \subseteq \mathbb{R}^2$ such that for each rigid motion $\rho \in Iso(\mathbb{R}^n)$

 $|\rho(\mathbb{Z} \times \{0\}) \cap H| = 1.$

• (Jackson-Mauldin, 2002) There exists $H \subseteq \mathbb{R}^2$, for which for every $\rho \in Iso(\mathbb{R}^n)$

 $|\rho(\mathbb{Z} \times \mathbb{Z}) \cap H| = 1.$

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

 λ^2 -a.e. $x \in \mathbb{R}^2$ a.e. $l \ni x : \lambda^1(H \cap l) = 1$.

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

 λ^2 -a.e. $x \in \mathbb{R}^2$ a.e. $l \ni x : \lambda^1(H \cap l) = 1$.

Idea of the proof:

Consider $H \subseteq \mathbb{R}^2 \times \{0\}$, $\chi_H : \mathbb{R}^3 \to \{0, 1\}$.

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

$$\lambda^2$$
-a.e. $x \in \mathbb{R}^2$ a.e. $l \ni x : \lambda^1(H \cap l) = 1$.

Idea of the proof:

Consider $H \subseteq \mathbb{R}^2 \times \{0\}$, $\chi_H : \mathbb{R}^3 \to \{0, 1\}$. Define $h : \mathbb{R}^3 \to [0, \infty]$, $h(z) = \int_{\mathbb{R}^2} \chi_H(w) \cdot \frac{1}{|w-z|} d\lambda^2(w)$.

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

$$\lambda^2$$
-a.e. $x \in \mathbb{R}^2$ a.e. $l \ni x : \lambda^1(H \cap l) = 1$.

Idea of the proof:

Consider $H \subseteq \mathbb{R}^2 \times \{0\}, \chi_H : \mathbb{R}^3 \to \{0, 1\}.$ Define $h : \mathbb{R}^3 \to [0, \infty], h(z) = \int_{\mathbb{R}^2} \chi_H(w) \cdot \frac{1}{|w-z|} d\lambda^2(w).$ Then for λ^2 -a.e. $x \in \mathbb{R}^2 \times \{0\}$

$$h(x) = \int_{\theta=0}^{\pi} \int_{r=-\infty}^{\infty} \chi_{H}(x + r(\sin(\theta), \cos(\theta), 0)) \cdot \frac{1}{|x + r(\sin(\theta), \cos(\theta), 0) - x|} \cdot |r| \, dr d\theta = 0$$

$$\int_{\theta=0}^{\pi} \int_{r=-\infty}^{\infty} \chi_{H}(x+r(\sin(\theta),\cos(\theta),0)) \cdot \frac{1}{|r|} \cdot |r| \, dr d\theta$$

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

$$\lambda^2$$
-a.e. $x \in \mathbb{R}^2$ a.e. $l \ni x : \lambda^1(H \cap l) = 1$.

Idea of the proof:

Consider $H \subseteq \mathbb{R}^2 \times \{0\}, \chi_H : \mathbb{R}^3 \to \{0, 1\}.$ Define $h : \mathbb{R}^3 \to [0, \infty], h(z) = \int_{\mathbb{R}^2} \chi_H(w) \cdot \frac{1}{|w-z|} d\lambda^2(w).$ Then for λ^2 -a.e. $x \in \mathbb{R}^2 \times \{0\}$

$$h(x) = \int_{\theta=0}^{\pi} \int_{r=-\infty}^{\infty} \chi_{H}(x + r(\sin(\theta), \cos(\theta), 0)) \cdot \frac{1}{|x + r(\sin(\theta), \cos(\theta), 0) - x|} \cdot |r| \, dr d\theta = 0$$

$$\int_{\theta=0}^{\pi}\int_{r=-\infty}^{\infty}\chi_{H}(x+r(\sin(\theta),\cos(\theta),0))\cdot\frac{1}{|r|}\cdot|r|\ drd\theta=\int_{\theta=0}^{\pi}1\ d\theta=\pi.$$

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

$$\lambda^2$$
-a.e. $x \in \mathbb{R}^2$ a.e. $l \ni x : \lambda^1(H \cap l) = 1$.

Idea of the proof:

$$\begin{split} h: \mathbb{R}^3 &\to [0, \infty], \ h(z) = \int_{\mathbb{R}^2} \chi_H(w) \cdot \frac{1}{|w-z|} d\lambda^2(w). \\ h(x) &= \pi \text{ for } \lambda^2\text{-a.e. } x \in \mathbb{R} \times \{0\}, \text{ and} \end{split}$$

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

$$\lambda^2$$
-a.e. $x \in \mathbb{R}^2$ a.e. $l \ni x : \lambda^1(H \cap l) = 1$.

Idea of the proof:

$$\begin{split} h: \mathbb{R}^3 &\to [0,\infty], \ h(z) = \int_{\mathbb{R}^2} \chi_H(w) \cdot \frac{1}{|w-z|} d\lambda^2(w). \\ h(x) &= \pi \text{ for } \lambda^2\text{-a.e. } x \in \mathbb{R} \times \{0\}, \text{ and} \end{split}$$

• h is continuous,

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

$$\lambda^2$$
-a.e. $x \in \mathbb{R}^2$ a.e. $l \ni x : \lambda^1(H \cap l) = 1$.

Idea of the proof:

$$\begin{split} h: \mathbb{R}^3 &\to [0,\infty], \ h(z) = \int_{\mathbb{R}^2} \chi_H(w) \cdot \frac{1}{|w-z|} d\lambda^2(w). \\ h(x) &= \pi \text{ for } \lambda^2\text{-a.e. } x \in \mathbb{R} \times \{0\}, \text{ and} \end{split}$$

- h is continuous,
- $0 \le h \le \pi$,

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

$$\lambda^2$$
-a.e. $x \in \mathbb{R}^2$ a.e. $l \ni x : \lambda^1(H \cap l) = 1$.

Idea of the proof:

$$\begin{split} h: \mathbb{R}^3 &\to [0,\infty], \ h(z) = \int_{\mathbb{R}^2} \chi_H(w) \cdot \frac{1}{|w-z|} d\lambda^2(w). \\ h(x) &= \pi \text{ for } \lambda^2\text{-a.e. } x \in \mathbb{R} \times \{0\}, \text{ and} \end{split}$$

- h is continuous,
- $0 \le h \le \pi$,

•
$$h|_{\mathbb{R}^2 \times (0,\infty)}$$
 is harmonic, i.e.
 $\frac{1}{\sigma(\{z: |z-z_0|=\delta\})} \int_{\{z: |z-z_0|=\delta\}} h(z) d\sigma(z) = h(z_0)$ (where σ is the spherical measure).

Theorem (Kolountzakis, Papadimitr<u>akis, 2016.)</u>

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

$$\lambda^2$$
-a.e. $x \in \mathbb{R}^2$ a.e. $I \ni x : \lambda^1(H \cap I) = 1$.

Idea of the proof:

$$\begin{split} h: \mathbb{R}^3 &\to [0,\infty], \ h(z) = \int_{\mathbb{R}^2} \chi_H(w) \cdot \frac{1}{|w-z|} d\lambda^2(w). \\ h(x) &= \pi \text{ for } \lambda^2\text{-a.e. } x \in \mathbb{R} \times \{0\}, \text{ and} \end{split}$$

- h is continuous,
- $0 \le h \le \pi$,

•
$$h|_{\mathbb{R}^2 \times (0,\infty)}$$
 is harmonic, i.e.
 $\frac{1}{\sigma(\{z: |z-z_0|=\delta\})} \int_{\{z: |z-z_0|=\delta\}} h(z) d\sigma(z) = h(z_0)$ (where σ is the spherical measure).

This implies (integrating with Poisson-kernel) that $h|_{\mathbb{R}^2 \times \{0\}} \equiv \pi$ determines $h|_{\mathbb{R}^2 \times [0,\infty)}$, hence $h|_{\mathbb{R}^2 \times [0,\infty)} \equiv \pi$.

Theorem (Kolountzakis, Papadimitrakis, 2016.)

There is no λ^2 -measurable $H \subseteq \mathbb{R}^2$, for which

$$\lambda^2$$
-a.e. $x \in \mathbb{R}^2$ a.e. $l \ni x : \lambda^1(H \cap l) = 1$.

Idea of the proof:

$$\begin{split} h: \mathbb{R}^3 &\to [0,\infty], \ h(z) = \int_{\mathbb{R}^2} \chi_H(w) \cdot \frac{1}{|w-z|} d\lambda^2(w). \\ h(x) &= \pi \text{ for } \lambda^2\text{-a.e. } x \in \mathbb{R} \times \{0\}, \text{ and} \end{split}$$

- h is continuous,
- $0 \le h \le \pi$,

•
$$h|_{\mathbb{R}^2 \times (0,\infty)}$$
 is harmonic, i.e.
 $\frac{1}{\sigma(\{z: |z-z_0|=\delta\})} \int_{\{z: |z-z_0|=\delta\}} h(z) d\sigma(z) = h(z_0)$ (where σ is the spherical measure).

This implies (integrating with Poisson-kernel) that $h|_{\mathbb{R}^2 \times \{0\}} \equiv \pi$ determines $h|_{\mathbb{R}^2 \times [0,\infty)}$, hence $h|_{\mathbb{R}^2 \times [0,\infty)} \equiv \pi$. But $\lim_{c \to \infty} h((a, b, c)) = 0$, a contradiction.

Consistency of the nonexistence

Theorem (M. Elekes, M. P., Z. Vidnyánszky)

It is consistent with ZFC that there is no set $H\subseteq \mathbb{R}^2$ such that for a dense $D\subseteq \mathbb{R}^2$

if $x \in D$, then for a.e. $l \ni x : \lambda^1(l \cap H) = 1$.

	Known results 0000	The new result 0●0000
Tools		

$$shr(\mathcal{N}) = \min\{\kappa : \forall A \subseteq \mathbb{R}, A \notin \mathcal{N} \exists B \subseteq A \text{ such that } B \notin \mathcal{N}, |B| \le \kappa\},\\ cov(\mathcal{N}) = \min\{\kappa : \exists (N_{\alpha})_{\alpha < \kappa} \forall \alpha N_{\alpha} \in \mathcal{N} \land \bigcup_{\alpha < \kappa} N_{\alpha} = \mathbb{R}\}$$

(where \mathcal{N} denotes the null ideal in \mathbb{R}).

		The new result
	0000	00000
Tools		

$$shr(\mathcal{N}) = \min\{\kappa : \forall A \subseteq \mathbb{R}, A \notin \mathcal{N} \exists B \subseteq A \text{ such that } B \notin \mathcal{N}, |B| \le \kappa\},\\ cov(\mathcal{N}) = \min\{\kappa : \exists (N_{\alpha})_{\alpha < \kappa} \forall \alpha N_{\alpha} \in \mathcal{N} \land \bigcup_{\alpha < \kappa} N_{\alpha} = \mathbb{R}\}$$

(where \mathcal{N} denotes the null ideal in \mathbb{R}).

Theorem (Folklore)

 $(\operatorname{shr}(\mathcal{N}) < \operatorname{cov}(\mathcal{N}))$ Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ has λ^1 -measurable sections (i.e. for each a $f_a : \mathbb{R} \to \mathbb{R}$ $(f_a(y) = f(a, y))$ is λ^1 -measurable, and for each b $f^b(x) = f(x, b)$ is λ^1 -measurable.)

	Known results 0000	The new result 0●0000
Tools		

$$shr(\mathcal{N}) = \min\{\kappa : \forall A \subseteq \mathbb{R}, A \notin \mathcal{N} \exists B \subseteq A \text{ such that } B \notin \mathcal{N}, |B| \le \kappa\},\\ cov(\mathcal{N}) = \min\{\kappa : \exists (N_{\alpha})_{\alpha < \kappa} \forall \alpha N_{\alpha} \in \mathcal{N} \land \bigcup_{\alpha < \kappa} N_{\alpha} = \mathbb{R}\}$$

(where \mathcal{N} denotes the null ideal in \mathbb{R}).

Theorem (Folklore)

 $(\operatorname{shr}(\mathcal{N}) < \operatorname{cov}(\mathcal{N}))$ Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ has λ^1 -measurable sections (i.e. for each a $f_a : \mathbb{R} \to \mathbb{R}$ $(f_a(y) = f(a, y))$ is λ^1 -measurable, and for each b $f^b(x) = f(x, b)$ is λ^1 -measurable.) Then there exists $f' : \mathbb{R}^2 \to \mathbb{R}$ Borel such that for almost every $a \in \mathbb{R}$ f_a and f'_a are almost equal, and for a.e. b, f^b and $(f')^b$ are almost equal.

	Known results 0000	The new result 0●0000
Tools		

$$shr(\mathcal{N}) = \min\{\kappa : \forall A \subseteq \mathbb{R}, A \notin \mathcal{N} \exists B \subseteq A \text{ such that } B \notin \mathcal{N}, |B| \le \kappa\},\\ cov(\mathcal{N}) = \min\{\kappa : \exists (N_{\alpha})_{\alpha < \kappa} \forall \alpha N_{\alpha} \in \mathcal{N} \land \bigcup_{\alpha < \kappa} N_{\alpha} = \mathbb{R}\}$$

(where \mathcal{N} denotes the null ideal in \mathbb{R}).

Theorem (Folklore)

 $\begin{array}{l} (\operatorname{shr}(\mathcal{N}) < \operatorname{cov}(\mathcal{N})) \text{ Suppose that } f: \mathbb{R}^2 \to \mathbb{R} \text{ has } \lambda^1 \text{-measurable sections} \\ (i.e. for each a f_a: \mathbb{R} \to \mathbb{R} \ (f_a(y) = f(a,y)) \text{ is } \lambda^1 \text{-measurable, and for each } b \\ f^b(x) = f(x,b) \text{ is } \lambda^1 \text{-measurable.}) \\ \text{Then there exists } f': \mathbb{R}^2 \to \mathbb{R} \text{ Borel such that for almost every } a \in \mathbb{R} \ f_a \text{ and } f_a' \\ \text{are almost equal, and for a.e. } b, \ f^b \text{ and } (f')^b \text{ are almost equal.} \\ \text{In particular, if } f \ge 0 \text{ then } y \mapsto \int_{x=-\infty}^{\infty} f(x,y) \ dx, \ x \mapsto \int_{y=-\infty}^{\infty} f(x,y) \ dy \text{ are } \\ \lambda^1 \text{-measurable, and} \end{array}$

$$\int_{y=-\infty}^{\infty}\int_{x=-\infty}^{\infty}f(x,y)\ dxdy=\int_{x=-\infty}^{\infty}\int_{y=-\infty}^{\infty}f(x,y)\ dydx.$$

Introduction		The new result
0	0000	000000

Theorem (M. Elekes, M. P., Z. Vidnyánszky)

It is consistent with ZFC that there is no set $H\subseteq \mathbb{R}^2$ such that for a dense $D\subseteq \mathbb{R}^2$

if $x \in D$, then for a.e. $I \ni x : \lambda^1 (I \cap H) = 1$.

Theorem (M. Elekes, M. P., Z. Vidnyánszky)

It is consistent with ZFC that there is no set $H\subseteq \mathbb{R}^2$ such that for a dense $D\subseteq \mathbb{R}^2$

if
$$x \in D$$
, then for a.e. $I \ni x : \lambda^1(I \cap H) = 1$.

Assume that shr(N) < cov(N). Suppose that such H exists. (For simplicity assume that H has measurable vertical and horizontal sections.)

Theorem (M. Elekes, M. P., Z. Vidnyánszky)

It is consistent with ZFC that there is no set $H\subseteq \mathbb{R}^2$ such that for a dense $D\subseteq \mathbb{R}^2$

if
$$x \in D$$
, then for a.e. $I \ni x : \lambda^1(I \cap H) = 1$.

Assume that shr(\mathcal{N}) < cov(\mathcal{N}). Suppose that such H exists. (For simplicity assume that H has measurable vertical and horizontal sections.) Define $h : \mathbb{R}^3 \to [0, \infty]$ similarly

$$h(w) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} \chi_H((x,y)) \cdot \frac{1}{|(x,y,0)-w|} dx dy.$$

h will have similar properties than the previous one, but we cannot use polar transformation (for $h|_D \equiv \pi$).

Theorem (M. Elekes, M. P., Z. Vidnyánszky)

It is consistent with ZFC that there is no set $H\subseteq \mathbb{R}^2$ such that for a dense $D\subseteq \mathbb{R}^2$

if
$$x \in D$$
, then for a.e. $I \ni x : \lambda^1(I \cap H) = 1$.

Assume that $shr(\mathcal{N}) < cov(\mathcal{N})$. Suppose that such H exists. (For simplicity assume that H has measurable vertical and horizontal sections.) Define $h : \mathbb{R}^3 \to [0, \infty]$ similarly

$$h(w) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} \chi_H((x,y)) \cdot \frac{1}{|(x,y,0)-w|} dx dy.$$

h will have similar properties than the previous one, but we cannot use polar transformation (for $h|_{D} \equiv \pi$).

Instead, for a fixed $w \in D$ denoting $\chi_H((x, y)) \cdot \frac{1}{|(x, y, 0) - w|}$ by $f_w(x, y)$, and fixing an automorphism of the projective plane g which maps horizontal lines to horizontal lines, and vertical lines to lines through w, and

 $\varphi: [0,\pi] \times \mathbb{R} \to \mathbb{R}^2, \ \varphi(\theta,r) = w + r(\sin(\theta),\cos(\theta)).$

$$h(w) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} \chi_H((x,y)) \cdot \frac{1}{|(x,y,0)-w|} dx dy.$$

For a fixed $w \in D$ denoting $\chi_H((x, y)) \cdot \frac{1}{|(x, y, 0) - w|}$ by $\mathbf{f_w}(\mathbf{x}, \mathbf{y})$, and fixing an automorphism of the projective plane \mathbf{g} which maps horizontal lines to horizontal lines, and vertical lines to lines through w, and

 $\varphi: [0,\pi] \times \mathbb{R} \to \mathbb{R}^2, \ \varphi(\theta,r) = w + r(\sin(\theta),\cos(\theta)).$

$$h(w) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} \chi_H((x,y)) \cdot \frac{1}{|(x,y,0)-w|} dx dy.$$

For a fixed $w \in D$ denoting $\chi_H((x, y)) \cdot \frac{1}{|(x, y, 0) - w|}$ by $\mathbf{f}_{\mathbf{w}}(\mathbf{x}, \mathbf{y})$, and fixing an automorphism of the projective plane \mathbf{g} which maps horizontal lines to horizontal lines, and vertical lines to lines through w, and

 $\varphi: [0,\pi] \times \mathbb{R} \to \mathbb{R}^2, \ \varphi(\theta,r) = w + r(\sin(\theta),\cos(\theta)).$

Lemma $\int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} f_w(x,y) dx dy = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} f_w(g(x,y)) \cdot |\det g'(x,y)| dx dy$

$$h(w) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} \chi_H((x,y)) \cdot \frac{1}{|(x,y,0)-w|} dx dy.$$

For a fixed $w \in D$ denoting $\chi_H((x, y)) \cdot \frac{1}{|(x, y, 0) - w|}$ by $\mathbf{f}_w(\mathbf{x}, \mathbf{y})$, and fixing an automorphism of the projective plane \mathbf{g} which maps horizontal lines to horizontal lines, and vertical lines to lines through w, and

 $\varphi: [0,\pi] \times \mathbb{R} \to \mathbb{R}^2, \ \varphi(\theta,r) = w + r(\sin(\theta),\cos(\theta)).$

Lemma

 $\int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} f_w(x,y) dx dy = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} f_w(g(x,y)) \cdot |\det g'(x,y)| dx dy$ (where det $g'(x,y) = \partial_x g_1(x,y) \cdot \partial_y g_2(x,y) = \partial_x g_1(x,y) \cdot \partial_y g_2(0,y)$).

$$h(w) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} \chi_H((x,y)) \cdot \frac{1}{|(x,y,0)-w|} dx dy.$$

For a fixed $w \in D$ denoting $\chi_H((x, y)) \cdot \frac{1}{|(x, y, 0) - w|}$ by $\mathbf{f}_{\mathbf{w}}(\mathbf{x}, \mathbf{y})$, and fixing an automorphism of the projective plane \mathbf{g} which maps horizontal lines to horizontal lines, and vertical lines to lines through w, and

 $\varphi: [0,\pi] \times \mathbb{R} \to \mathbb{R}^2, \ \varphi(\theta,r) = w + r(\sin(\theta),\cos(\theta)).$

Lemma

$$\int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} f_w(x,y) dx dy = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} f_w(g(x,y)) \cdot |\det g'(x,y)| dx dy$$
 (where det $g'(x,y) = \partial_x g_1(x,y) \cdot \partial_y g_2(x,y) = \partial_x g_1(x,y) \cdot \partial_y g_2(0,y)$).

Lemma

$$\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} f_w(g(x,y)) \cdot |\det g'(x,y)| dy dx = \int_{\theta=0}^{\pi} \int_{r=-\infty}^{\infty} f_w(\varphi(\theta,r)) \cdot |\det \varphi'(\theta,r)| dr d\theta = \pi.$$

$$h(w) = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} \chi_H((x,y)) \cdot \frac{1}{|(x,y,0)-w|} dx dy.$$

For a fixed $w \in D$ denoting $\chi_H((x, y)) \cdot \frac{1}{|(x, y, 0) - w|}$ by $\mathbf{f}_{\mathbf{w}}(\mathbf{x}, \mathbf{y})$, and fixing an automorphism of the projective plane \mathbf{g} which maps horizontal lines to horizontal lines, and vertical lines to lines through w, and

 $\varphi: [0,\pi] \times \mathbb{R} \to \mathbb{R}^2, \ \varphi(\theta,r) = w + r(\sin(\theta),\cos(\theta)).$

Lemma

$$\int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} f_w(x,y) dx dy = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{\infty} f_w(g(x,y)) \cdot |\det g'(x,y)| dx dy$$
 (where det $g'(x,y) = \partial_x g_1(x,y) \cdot \partial_y g_2(x,y) = \partial_x g_1(x,y) \cdot \partial_y g_2(0,y)$).

Lemma

$$\int_{x=-\infty}^{\infty} \int_{y=-\infty}^{\infty} f_w(g(x,y)) \cdot |\det g'(x,y)| dy dx = \int_{\theta=0}^{\pi} \int_{r=-\infty}^{\infty} f_w(\varphi(\theta,r)) \cdot |\det \varphi'(\theta,r)| dr d\theta = \pi.$$

with introducing $f_0(x, y) = f_w(g(x, y)) \cdot |\det g'(x, y)|$, $f_1(r, \theta) = f_w(\varphi(\theta, r)) \cdot |\det \varphi'(\theta, r)|$ and the transformation $\varphi^{-1} \circ g$

Thank you for your attention!

References

- F. Bagemihl, P. Erdös: *Intersections of prescribed power, type, or measure.* Fund. Math. 41, (1954) 57-67.
- M.N. Kolountzakis, M. Papadimitrakis: Measurable Steinhaus sets do not exist for finite sets or the integers in the plane. Bulletin London Math. Soc., 49, 5 (2017), 798-805.
- I. Recław and P. Zakrzewski: *Strong Fubini properties of ideals.* Fund. Math. 159 (1999), 135–152.